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Abstract-Convective heat transfer properties of an hydrodynamically and thermally fully-developed flow in 
a multi-passage circular tube subjected to an external uniform heat flux are analyzed. The significant 
dimensionless parameters affecting the problem have been determined. The expressions ofNusseh numbers on 
the inner and the outer wall are obtained. The limiting cases are correlated with the existing values. The 
representative curves illustrating the variation of Nusselt numbers with the pertinent parameters are plotted. 

1. INTRODUCTION 

THE EXISTING heat transfer characteristics of laminar 
flow in a circular pipe subjected to an external uniform 
heat flux is extended, without simplifying assumptions, 
to the case of combinations of laminar multi-passage 
flows maintained under thesame boundary conditions. 
Neglecting the heat conduction effect at the inner 
separation wall, the temperature distribution field is 
obtained at any section of the segment of the system 
where flows are hydrodynamically and thermally fully 
developed. All possible approaches for obtaining the 
dimensionless heat transfer coefficients, the Nusselt 
numbers, at the interface which separates the inner and 
outer flow, and at the outer wall are systematically 
analyzed. It is shown that the Nusselt numbers depend 
only on two dimensionless parameters : 

(4 

(ii) 

The ratio of the thermal conductivities of the 
fluids from the inner and outer passages, kk. 
The product of kt and the ratio of the P&let 
numbers of the flows from the inner and outer 
passages, n = krkp,, which is here called the heat 
exchange number of the multi-passage pipe. 

Corresponding to each of the approaches, the 
analytical forms of Nusselt numbers are obtained. 
Typical values for the ratio of the thermal 
conductivities of the two fluids and the heat exchange 
numbers are selected. The Nusselt numbers are then 
plotted against the dimensionless radius of the 
interface. The gradual effects of the velocity changes in 
the inner and the outer passages are demonstrated by 
plotting the Nusselt numbers against the heat exchange 
number for a typical ratio of heat conductivities and a 
typical value of dimensionless radius of interface 
separation. The physical significances of the Nusselt 
numbers corresponding to the limiting cases of the 
interface located at the outer wall and of the interface 
shrinking to a line at the center are correlated to the 
known values. 

2. TEMPERATURE DISTRIBUTION 

A literature survey [l-7] indicates that convective 
heat transfer studies for laminar flows in multi-passage 
circular pipes based on exact temperature distributions 
are not available. The interest for wall heat transfer 
coefficients based on exact temperature distribution is 
of importance, for both the theory and the practical 
design considerations of heat exchangers involving two 
flows in separated sections of a conduit. In this paper, 
the convective heat transfer characteristics of two such 
flows, one confined in the inner passage and one 
confined in the other passage of a circular pipe 
subjected to an arbitrary longitudinal external heat 
flux, are analyzed. The thickness of the separating 
interface and the heat conduction resistance of the inner 
wall, however, are neglected. The flow characteristics 
and the notations used are shown in Fig. 1. 

The differential equations for the velocities of the 
outer and the inner flows which are maintained under 
independent pressure gradients are, respectively, 

where X and Y are transversal rectangular coordinates 
and P,, Pi are the pressures in the outer and inner 
passages, respectively. 

The Reynolds numbers for each flow are defined as 
the Reynolds numbers for a simple circular pipe of 
radius L filled with the corresponding fluid and 
maintained under the corresponding pressure gradient 
in each passage [S]. Thus, 

It must be noted that the ratio between the Reynolds 
numbers represents the ratio between the pressure 
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A,, 4 

c, c 

cpo7 cpi 

Ei, ei 

Ein, gin 

J% e, 

NOMENCLATURE 

cross-sectional areas for outer and 
inner passages, respectively [m2] 
dimensional and dimensionless 
temperature gradient along the pipe, 
equation (12) 
specific heats of outer and inner flows, 
respectively 
dimensional and dimensionless excess 
temperature of inner pipe, equation 

(12) 
dimensional and dimensionless 
interface temperature, equation (12) 
dimensional and dimensionless excess 
temperature of outer pipe, equation 

(12) 
E,,, E,i mixed mean excess temperature of 

the outer and inner pipe, respectively, 
equation (25) [K] 
characteristic heat flux, equation (12) 
factor defined by equation (14) 
dimensionless function for outer and 
inner fluids, respectively, equations (14) 
and (15) 
factor defined by equation (14) 
dimensional and dimensionless heat 
generation densities of outer fluid, 
equation (12) 
dimensional and dimensionless heat 
generation densities of inner fluid, 
equation (12) 
outer and inner convective heat 
transfer coefficients, equations (34) 

CWm 1 
-2 K-r 

function defined by equation (7) 
function defined by equation (30) 
functions defined by equation (28) 
function defined by equation (31) 
thermal conductivities of outer and 
inner fluids, respectively 

Wm 1 
-‘K-l 

ratio of the specific heats of the inner 
fluid to the outer fluid, equation (26) 
ratio of the thermal conductivities of 
the inner fluid to the outer fluid, 
equation (38) 
ratio of the P&let numbers of the 
inner fluid to those of the outer fluid 
outer radius, equation (3) and Fig. 1 

Cm1 
(Nu),, (Nu)~ Nusselt numbers on the outer and 

inner walls, respectively, equations (35) 

P,, Pi pressure for outer and inner passages, 
equation (1) [kPa] 

(Pe),, (Pe), P&let numbers, Re Pr, of outer 
and inner fluids, respectively 

(Pr),, (Pr)i Prandtl numbers of outer and 
inner fluids, respectively, v/u 

Qo, Qi mass flow rates of outer and inner 
fluids, respectively, equation (6) 

Ekg s-l1 
dimensional and dimensionless radial 
coordinates for both flow regions 
varying between R = r = w, 
the inner pipe and R = r = 1, the 
outer pipe, Fig. 1 

Re)i Reynolds number of outer and 
inner fluids, respectively, equation (2) 
outer and inner wall temperatures [K] 
mixed mean temperature, equation (23) 

CKI 
heat fluxes from outer and inner walls, 
equation (20) 
velocity vector [m s- ‘1 
dimensional and dimensionless 
velocity of inner fluid, equation (3) 
dimensional and dimensionless 
velocity of outer fluid, equation (3) 
transversal rectangular coordinate 
transversal rectangular coordinate; 
also function defined by equation (29) 
dimensional longitudinal coordinate. 

Greek symbols 
thermal diffusivity, [m’ s- ‘1 
function defined by equation (17) 
ratio between the mass flow rates, 
equation (8) 
dimensionless heat exchange number, 
equation (19) 
function defined by equation (5) 
coefficients of dynamic viscosity of 
outer and inner fluids, respectively, 

Ckgm 1 -1 s-1 

coefficients of kinematic viscosities of 
outer and inner fluids, respectively 
[m’s_‘] 
densities of inner and outer fluids, 
respectively [kg m- ‘1 
dimensionless inner radius of the 
annulus, Fig. 1 

-I 

gradients of the flows in the separated regions and their coordinate and the dimensionless velocities by the 
respective viscosities. relations, 

Using the kinematic viscosity v, as a reference 
viscosity and defining the dimensionless radial 

R = Lr, W, = 2 wo, (3) 
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FIG. 1. The annular geometry. 

the dimensionless velocities for the flows in the outer 
and the inner passages are : 

w, = (Re),(l -6 +pln r), wi = z (Re)i(w2 -9) (4) 

where o is the dimensionless interface radius and 

p = -(l -w’)/ln 0. (5) 

The mass rates of flow for each section, which will 
later enter into the formulation of the heat transfer 
coefficients, are 

Q, = 2w,UW,L, Qi = 5 piw4L(Re)i (6) 

where 

The ratio between the mass flow rates is 

(8) 

At sufficient distances from both entrances, the fully- 
developed temperature distributions are established 
and the temperature distributions in the outer and 
inner passages due to convective heat transfer caused 
by the external uniform heat flux condition have the 
following functional forms [8] : 

T, = CZ+E,(X, Y), Ti = CZ+Ein+Ei(X, Y) (9) 

where C is the uniform external temperature gradient 
along the pipe, E, and Ei are the excess temperatures of 
the outer and inner flows, respectively, and E, is the 
interface temperature. The boundary conditions of 
excess temperatures are 

E, = 0 on the outer periphery 

E, = Ei, on the interface (10) 

Ei = 0 on the interface. 

The energy equation to be satisfied by each 
temperature distribution, in order to maintain 
generality, including a uniform heat generation H, is 

P*gradT=a V*T+: 
( > 

where pis the velocity vector, Tis temperature and CL is 
thermal diffusivity for the proper flows in each passage. 

The dimensionless thermal variables are introduced 
by the following relations, 

H, = 2 h,, C=$c, Eo=$eo 
0 0 

Hi = i hi, E, = F ein, Ei = g ei (12) 
0 0 

where H,, Hi and h,, hi are dimensional and 
dimensionless heat generation densities for outer and 
inner passage flows, respectively. F denotes an 
arbitrary heat flux. 

After some similar calculations, as was done in [S], 
the dimensionless temperatures for the outer passage 
and the inner passage are obtained as follows. 

The outer flow dimensionless excess temperature : 

e, = eing + h,f, + G,e,, (13) 

where 

G, = c(Pe),, (Pe), = P&let number of outer flow 

g = (In r)/(ln o), h = f (1 - r* + pin r) 

e,,= eo~+e02feo3+eo4+eo5 

1 
e,,=-4(1-r*+plnr) 

eo2- -0 

eo3=ap 1-g r*lnr 
( > 

1 
eo5 = -4 p( 1 -r* + pin r). (14) 

The zero value of the term eo2 is maintained here for 
easy cross reference to [8]. It will not vanish for a 
section of elliptic form. 

The inner flow dimensionless excess temperature is 
given as : 

4%hi-Gi-$(3w2-r*) (15) I 1 
where G, = cw3(Pe),, (Pe), = P&let number of inner 
flow. 

The value of the dimensionless interface tempera- 
ture, ein, will be determined by the condition ofheat flux 
continuity at the interface as 

Introducing an alternate dimensionless interface 
temperature B as /? = e,JG, and substituting e, and ei 
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from (13) and (15) into (16), after neglecting the heat 
generations, one finds 

/I= 
1 1 1 

16w(3-44/r+7w2)-4~3+qkG- P ki G, 1 olnw. 
0 0 

(17) 

Substitution of G, and G, into (17) yields 

p= 
[ 

~~(3-4p+7c0~)-~(l-q)~~~ lnw. (18) 1 
where 

(19) 

Due to the fact that the heat flow crossing the 
interface between the outer and inner flows will be 
affected by n, this dimensionless factor can be called the 
heat exchange number of the multi-passage flow. 
Furthermore the sign of this parameter determines the 
relative directions of the flows. That is, when q is 
positive, the flows are unidirectional, parallel-flow 
combination ; when q is negative, the flows are in 
opposite directions, the counter-flow combination. 

Case II. The heat transfer coefficient at the inner 
surface of the interface is defined relative to 
the bulk temperature of the inner flow. The 
heat transfer coefficient at the outer surface of 
the interface is defined relative to the bulk 
temperature of the outer flow. In this case, 
since the inner flow is also subjected to an 
external uniform heat flux, the former heat 
transfer coefficient will have a trivial value 
corresponding to the usual dimensionless 
number 48/l 1. 

Case III. The heat transfer coefficient at the inner 
surface is defined relative to the difference 
between the outer flow and inner flow bulk 
temperatures. 

The mixed mean temperature ofthe combined flow is 

T, = C,,P, 
( s 

W,T, dA 
A0 

where p,,, A, and pi, Ai are the densities and the cross- 
sectional areas for the outer and inner passages, 

3. HEAT FLUXES AND HEAT TRANSFER 
respectively. 

COEFFICIENTS Substituting To and T from (9), this reduces to 

The rates ofheat flows per unit length ofpipe through 
the outer and inner surfaces, considered positive when 

Tm = CZ+(E,,+k,rZEi,+k,rZE,i) (24) 

flowing into the outer section are expressed as [8] : 
where 

u.=2nLFG.[&+e,(l)] 
E,, =p 

s 
W,E,dA, Emi wEidA (25) 

0 A0 

Ui= -2nLFG, & + oe&,(w) 1 (20) and 
k, = C,JC,,. (26) 

where Substituting the dimensional variables for the 

ek(l) = f(l-p) - $p(l +02) + +p1 
dimensionless counterparts, the mixed mean excess 
temperatures E, and E,i are expressed as 

oeb,(w) = e&( 1) - I,. (21) E,,=+;, jQi=-pLJ. 
’ (27) 

Here, the primes indicate differentiation with respect 
0 00 k, co4 

to r. where 

By substituting the excess temperature, e,, from (13) 1 ’ 
and the excess temperature, ei, from (15), the rates of 
heat flows are simplified as 

Jo = - O, 
s 
o w,e, dr, 

U, = 2rrLFGO;[(1-w2)(l+w2-&+q~4] 

1 v, lR 
Ji = - (~e)i T 

s 
rwiei dr. (28) o 

Ui = - 2nLFG, ; qw4. 

After performing the integrations for J, and Ji, one 

(22) finds 

The existence of two separate independent flow 
$= /?Y+J,,, Y =-&I,, (29) 

0 
regions makes it possible for the surface heat transfer where 
coefficients to be defined in various ways. The three 
approaches considered in this paper are : I,, =-+p+f(‘-d)d 

Case I. The inner and outer wall transfer coefficients 
are defined relative to the mixed flow bulk 1 

temperature of the inner and outer flow. 
+q(l-02)p-tW41nm 



J, =f 

[ 
+08)-;(l-d)lr-; depend only on the following two dimensionless 

parameters : 

x(l+w~)(1-o~)~+~(1-W~)~~-3(1-~~)~~ . 1 
(i) the ratio of the thermal conductivities of two 

fluids, kt ; 
(ii) the heat exchange number, q. 

(30) One advantage of formulating the Nusselt numbers 

J. 11 as in Case I is that the Nusselt number at the outer 
L_ = - 08k,,. 
GO 384 surface in both limiting cases of w = 0 and w = 1 

reduces to the expected value of48/11. Also, the Nusselt 
The individual bulk temperatures of the outer and number at the interface in the limiting case of w = 1 

inner flows are reduces to 48/l& and in the limiting case of o = 0 to 
zero. 

(32) 
Case II 

Substituting the expressions for T, and T from (9) 
If the heat transfer coefficients at each of the surfaces 

into (32) gives 
are defined relative to the mutual bulk temperatures of 
each of the separated flows, considering the positive 

T,, = CZ + E,,, Tmi = CZ+Ein+Emi (33) heat flow into the outer region, one can write 

where E,, and ,Qi are the same expressions as in the U, = (CZ- T,,)27rLli, 
previously written forms in (27). Ui = (CZ + Ei, - T,,,)2nwL&, 

Case I (for the outer face of interface) 
If the heat transfer coefficients (& and hi) at the outer 

and inner surfaces are defined relative to the overall 
Ui = - (CZ + Ei, - T,,)27r0L&~ 

bulk temperature of the entire section, one can write (for the inner face of interface). (39) 

U, = (CZ- T,)27rL&, Ui = (CZ+ Ei, - T,)27cwL& Selecting the fluid in the outer passage as the 

(34) 
reference fluid, the Nusselt numbers on each of the 
surfaces based on their mutual diameter sizes are 

Selecting the fluid in the outer passage as the 
reference fluid, the Nusselt numbers on each surface 
based on their diameters are 

(Nu), = $ &,,, 
0 

(Nu), = F & and (Nu)~ = y gi. (35) 
(Nu), = F &,,, 

0 0 0 

Equating the two forms of the rates of heat flows in 
(22) and (34), and neglecting heat generations, the result 

(Nu)~~ = 7 hii. (40) 
0 

simplifies to give For this formulation, as was pointed out before, the 

(l-e_?)(l+w2-~)+qo4 = 
8 Nusselt number (N& will produce a trivial value of 

4z,, + VU4 48/11. 
Equating the two forms of the rates of heat flows in 

(22) and (39), and neglecting heat generations, the result 
simplifies to give 
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8 

rP4 = - 41, + vi+ 

(l-02)(1 +wz-~)+~w4 = 2 p (Nu),, (41) 
00 

and 

x [$ +~sw4(~~~4)+BZ~](N~)i. (37) J&o ?jw4=-2 I 
( > 

- +B (W, (42) 
00 

where I,, 8, Jo/Go are given in (7), (18) and (29), 
where respectively. 

k, = kJk, (38) 
In this case, it is seen that the two non-trivial Nusselt 

numbers, (Nu),, and (Nu),,, depend on only one single 
and I,, 8, Jo/Go are given by equations (7), (18) and (29), dimensionless parameter, the heat exchange number rl. 
respectively. However,in both thelimitingcasesofo = Oandw = 1, 

It is to be noted that the Nusselt numbers in (36) and they will not reduce to the expected value of 48/l 1 and 
(37), besides being dependent on the size ofthe interface, zero. Moreover, since both Nusselt numbers are based 
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on the outer flow bulk temperature, their values will be 
identical to the Nusselt numbers for the inner and outer 
surfaces of a separate annular flow under proper surface 
heating conditions provided that Nusselt numbers are 
based on the hydraulic diameter. The ratio of these 
surface heating conditions can be obtained from (22) as 

V. 
_2= w4 

v, (1--w~)(1+w*-/L)+fJo4 
(43) 

In the limiting case of w = 1, the outer flow will 
approach the case of flow between two parallel plates. 
Therefore, (Nu),, and (Nu), will approach the values of 
the Nusselt numbers for flow between two parallel 
plates whose surfaces are maintained by the heating 
conditions expressed in (43) if the hydraulic diameter is 
used in (40). 

Case III 
If the heat transfer coefficient at the interface is 

defined relative to the difference between the outer flow 
and the inner flow bulk temperatures, one writes 

and Vi = -(T,, - 7’,‘,i)2nwL&. (44) 

Here again the heat flow rate is assumed to be positive 
when heat is flowing into the outer flow region. 

Selecting the fluid in the outer passage as the 
reference fluid, the Nusselt numbers at the interface and 
interface surface based on their diameter’s size are 

(Nu)i = y &, (Nu), = F 5. (45) 
0 0 

Equating the two forms of the rates of flows in (22) 
and (44), and neglecting heat generation, after some 
calculations one finds 

(Nu), (47) 

where I,,, p, Jo/G, are given in (7), (18) and (29) 
respectively. Here again it is to be noted that (Nu)~ and 
(Nu), depend on the same two dimensionless 
parameters : 

(i) The thermal conductivity of the two fluids, k, 
(ii) The heat exchange number, r]. 

In this case it must be noted that these Nusselt 

numbers do not approach any known values for the 
limiting cases of w = 0 and o = 1. 

4. DISCUSSION OF NUMERICAL 
RESULTS AND CONCLUSIONS 

Convective heat transfer for laminar flows in a multi- 

passage circular pipe subjected to an external uniform 
heat flux is analyzed and the results are presented in 
graphical form for three cases. For each case, the 
variation of the Nusselt numbers are plotted in two 
different ways as follows : 

1. Selecting a numerical value for the ratio of the 

thermal conductivity of two fluids as k, = 1, and using 
four fixed values for dimensionless heat exchanger 
number ~(1, 10, - 1, - lo), both Nusselt numbers are 
plotted against the dimensionless radius of the interface 
for all three cases. These curves are shown in Figs. 2-7. 

2. Again selecting the same numerical value of 

thermalconductivity ratio ask, = 1, but using only one 
value for dimensionless inner pipe radius w as 0.4, both 
Nusselt numbers are plotted against the dimensionless 

heat exchanger number, q for all of the three cases. 
These curves are shown in Figs. 8 and 9. 

It must be noted that, except for the Case III, in the 
limiting cases of w = 0 and o = 1, the Nusselt numbers 
coincide with the expected value of 48/l 1. 

The graphical results are only for one value of 

thermal conductivity ratio k, = 1 which is charac- 
teristic of the same fluid in the inner as well as the outer 
passages. It is indeed easy to evaluate equations (36), 
(37), (41) (42), (46) and (47) numerically for any other 
thermal conductivity ratio. 

The results presented in Figs. 2-7 have been verified 

for the limiting cases of o = 0 and w = 1 .O. No attempt 
has been made to compare these results for other values 

@ 7J = 1.0 
@ 7) = 10.0 

@~‘-I0 
@ 7) q - 10.0 

0 1 5- 
/ 4 3636 .4.3636 

0 ’ I 
0.0 0. I 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.9 1.0 

CORE SIZE, Lc) 

FIG. 2. Nu, vs o for Case I. 
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._ 

is 
0 

-10 

_.I 

I.0 

FIG. 3. Nui vs o for Case I. 

--4 

of w. The numerical calculations to plot these figures 
are trivial and no discussion is presented. However, a 
discussion is presented for each of the figures. 

Figure 2. The representative curves show the 
variation of outer wall Nusselt number defined relative 
to the mixed bulk temperatures of the inner and outer 
flows with the dimensionless radius ofinner separation, 
o. In bothlimitingcases ofo = Oandw = 1, thesystem 
simplified to a simple pipe flow with a uniform external 

@ 7) = 1.0 

25 @ 7 = 10.0 
@ = - 1.0 

@ 

7) 
7) = - 10.0 

20 

t 

-5 I- 

.3636 

heat flux and the Nusselt number reduces to the 
expected value of 48/11. In the case of parallel flow 
arrangement, the curves (1) and (2) indicate highest and 
lowest Nusselt numbers for special values of the 
separating wall size o. In the case of counter-flow 
arrangement, the curves (3) and (4) indicate again 
highest and lowest Nusselt numbers for particular 
values of o. However, this time for each heat exchange 
number 9 there is a special w for which the Nusselt 

II CORE SIZE, cn) 

FIG. 4. Nu, vs o for Case II. 
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25 - 

20 - 

15 - 

IO - 
.- 

z’ 
5- 

FIG. 5. Nui vs o for Case II. 

number vanishes. It can be noted that the Nusselt 
numbers at the separating wall also vanish-the curves 
(3) and (4) of Fig. 3-exactly for the same particular 
values of w. This behavior corresponds to special 
counter-flow arrangements (with special rl and special 
w), where the thermally fully-developed conditions 
cannot be reached with a finite external heat flux. In 
that case, a uniform temperature prevails everywhere 
with no external heat flux. 

Figure 3. For both parallel and counter-flow 

arrangements in the limiting case of w = 1, the outer 
flow disappears and the system reduces td a simple pipe 
where the Nusselt number at the inner surface 
represents the outer wall Nusselt number (48/l 1) of the 
simple pipe flow. This value is observed as the 
horizontal asymptote of all curves. 

It is seen that all curves have a unique vertical 
asymptote. For example, in the case of parallel flow 
arrangement with rl = 1, when the dimensionless 
radius of separation wall is smaller than 0.5498, the 

2c 

15 

IO 

5 
0 

z’ 
0 

-5 

-10 

-15 

I , 

0.1 0.2 

-4 .3636 

CORE SIZE, w 

FIG. 6. Nu, vs o for Case III 
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FIG. 7. Nq vs w for Case III. 

Ia (1) W-0.4.CASE I 

(2) W= 0.4 3 CASE II 
16 - 
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4- 

FIG. 8. Nu, vs 9 for Cases I, II and III for o = 0.4. 
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(I) W=0.4.CASE I 

(2) W =0.4, CASE II 

(3) (3)L3=0.4, CASE Ill 

-2i 

-4 
I 

-6- 

FIG. 9. Nui vs q for Cases I, II and III for w = 0.4. 

Nusselt number at the interface and based on the total 
mixed bulk temperature of both flows has positive 
values. This means that heat flows from the inner to the 
outer region when the inner wall temperature is greater 
than the overall bulk temperature, and heat flows from 
the outer to the inner region when the inner wall 
temperature is smaller than the overall bulk 
temperature. When o is larger than 0.5585, the opposite 
happens. That is, the heat flow direction can be related 
to the difference between the inner wall temperature 
and overall bulk temperature. In the case of counter 
flow arrangement, a similar property prevails. 
However, the opposite heat flow directions at theinner 
surface take place than that described for parallel flow. 
It is also seen that the curves (3) and (4) intersect the 
horizontal axis at special points. The significance of 
these points has been described earlier. 

Figure 4. The representative curves show the 
variation of outer surface Nusselt number defined 
relative to the bulk temperature of outer flow and the 
variation of inner surface Nusselt number based on 
the bulk temperature of the inner flow with the 
dimensionless radius of inner separation, w. It is seen 
that in the limiting case of o = 0, the system simplifies 
to a simple pipe flow and all the Nusselt numbers reduce 
to 48/11. When w approaches 1.0, the Nusselt numbers 
become very large corresponding to the cases for which 
the bulk temperatures and the wall temperatures 
become equal. 

In the case of counter-flow arrangements, the curves 
(3) and (4) have vertical asymptotes. Around these 
asymptotes, the Nusselt number signs change and the 
heat flow directions at the outer surface can be related 
to the differences of the bulk and wall temperatures. In 
addition, the counter-flow Nusselt numbers vanish at 
some special values of CU. The significance of these 
conditions was discussed in the discussion of Fig. 2. 

Figure 5. On the inner separating wall two Nusselt 
numbers are considered. The Nusselt number on the 
outer face of the interface, Nui,, and the Nusselt number 
on the inner face of the interface, Nuii. As it was 
indicated in Section 2, Nuii has the trivial value of48/11. 
In the case of parallel flow, the curves (1) and (2) show 
the variation of Nu, with the dimensionless radius of 
the interface indicating a gradual change from zero to 
infinity. It must be noted that due to the simplicity of 

geometry, the interface Nusselt numbers are defined, 
equation (40), on the basis of the diameter of the inner 
wall. Therefore, the infinitely large values of Nu, for w 
approaching unity are to be expected. In addition, the 
values of Nu, for any w are not directly comparable to 
the values obtained in [S] since the Nusselt numbers 
were based on the hydraulic diameter. 

Figure 6. The representative curves show the 
variation of the outer wall Nusselt number defined 
relative to the difference between the outer and inner 
flow bulk temperatures with the dimensionless radius 
of interface w. It must be noted that in the limiting case 
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of o = 0, the values of the Nusselt numbers do not 
approach any established value. This is due to the fact 
that the Nusselt numbers are not defined relative to any 
of the bulk temperatures. In the case of parallel flow 
arrangement, the curves (1) and (2) indicate highest and 
lowest Nusselt numbers for special values of the 
separating wall size w. In the case of counter-flow 
arrangement, the curves (3) and (4) have vertical 
asymptotes indicating that the Nusselt numbers, as 
defined in this paper, are changing their sign around 
these special w values. 

Figure 7. The representative curves show the 
variation of inner surface Nusselt number defined 
relative to the difference between the outer and inner 
flow bulk temperatures with the dimensionless radius 
of inner surface. Again in the limiting case of w = 1, the 
Nusselt numbers approach the established value of 
48/l 1. In the case of parallel flow, the Nusselt numbers 
are increasing gradually from 0 to 4.3636. In the case of 
counter flow, the curves (3) and (4) have vertical 
asymptotes. The significance ofvertical asymptotes was 
also discussed for the previous cases. 

Figures 8 and 9. The gradual effect of heat exchange 
number, q, on the outer Nusselt number, Nu,, and on 
the inner Nusselt number, Nu,, for each three cases are 
presented for a fixed value ofo. The range of q is selected 
from - 10 to + 10. The Nusselt numbers at the end 
points, q = - 10 and q = 10, thus correspond to the 
Nusselt numbers for these particular q values. It is seen 
that for Cases II and III, there is a horizontal and a 
vertical asymptote. Around the q values of these 

asymptotes, Nusselt numbers change sign indicating a 
heat flow direction property as discussed in the 
previous cases. 
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CONVECTION THERMIQUE POUR LES ECOULEMENTS LAMINAIRES DANS UN 
TUYAU CIRCULAIRE MULTI-PASSAGE, SOUMIS A UN FLUX DE 

CHALEUR EXTERNE UNIFORME 

R&sum&On analyse la convection thermique d’un 6coulement hydrodynamiquement et thermiquement 
Ctabli dans un tube circulaire multi-passage, soumis B un flux de chaleur exteme uniforme. Les parametres sans 
dimension qui caracttrisent le problemme sont dbterminb. On obtient les expressions des nombres de Nusselt 
sur les parois interne et externe. Les cas limites sont relits aux valeurs existantes. On donne les courbes 

reprksentant la variation des nombres de Nusselt avec les param6tres pertinents. 

KONVEKTIVER WARMEUBERGANG BE1 LAMINARER STRC)MUNG IN EINEM 
MEHRGANGIGEN KREISRUNDEN ROHR BEI AUFGEPRAGTER AUSSERER 

WARMESTROMDICHTE 

Zusammenfassung-Der konvektive Wgrmeiibergang bei einer hydrodynamisch und thermisch voll 
entwickelten Striimung in einem mehrglngigen kreisrunden Rohr wurde bei aufgeprlgter lul3erer 
WBrmestromdichte untersucht. Die signifikanten dimensionslosen Parameter wurden bestimmt. Es werden 
Ausdriicke fiir die Nusseltzahl des inneren und IuDeren Wiirmeiiberganges ermittelt. Die Grenzfglle werden 
mit vorhandenen Werten korreliert. Die dargestellten KurvenverlIufe zeigen die AbhIngigkeit der 

Nusseltzahl von den entsprechenden Parametem. 

KOHBEKTLlBHbIR TEIIJIOOSMEH I-IPki JIAMWHAPHOM TEYEHHH 
B MHOrOKAHAJIbHOfi KOJIbqEBO$i TPY6E C PABHOMEPHbIM HArPEBOM 

BHELUHWM TEHJIOBbIM I-IOTOKOM 

AHHOTauHR-AHanlr3apyto-rca XapaKTepHCTliKH KOHBeKTUBHOrO Tennoo6MeHa I'aApOAliHaMN'ieCKH n 

TepMWIeCKU nOJlHOCTbH) pa3BllTOrO TeYeHBIl B MHOrOKaHa.UbHOii KOJIbueBOfi Tpy6e "pa paBHOMepHOM 

HarpeBe BHWIHAM TeIIJIOBbIM IIOTOKOM. On&EAeJIeHbI BalKHbIe 6espa3MepHbIe IIapaMeTpbI. nOJIyqeHb1 

BbIpawteHEVl AJIX ‘ISKi HyccenbTa Ha BHyTpeHHeii II BHemIieii CTeHKaX. PaCCMOTpeHO COOTHOIIIeHAe 

MeEAyAaHHbIMA B npeAeAbHbIX CJIy'IUX H UMeIOmHMBCR BeAII'IBHaMB. ,-fOCTpOeHbI Tpa@FIeCKAe SaBll- 

CkiMOCTMII3MeHeHIIII'fACen HyCCeJIbTaOTCOOTBeTCTByIOIJUiX napaMeTpOB. 


